Copied to
clipboard

G = C32×C22≀C2order 288 = 25·32

Direct product of C32 and C22≀C2

direct product, metabelian, nilpotent (class 2), monomial

Aliases: C32×C22≀C2, C6222D4, C231C62, C62.289C23, (C6×D4)⋊10C6, (C23×C6)⋊9C6, (C2×C4)⋊1C62, C246(C3×C6), C6.84(C6×D4), (C6×C12)⋊26C22, (C2×C62)⋊1C22, (C22×C62)⋊1C2, C223(D4×C32), C22.10(C2×C62), C2.4(D4×C3×C6), (D4×C3×C6)⋊19C2, (C2×C12)⋊8(C2×C6), (C2×D4)⋊1(C3×C6), (C2×C6)⋊10(C3×D4), C22⋊C42(C3×C6), (C22×C6)⋊2(C2×C6), (C3×C22⋊C4)⋊10C6, (C3×C6).301(C2×D4), (C2×C6).95(C22×C6), (C32×C22⋊C4)⋊18C2, SmallGroup(288,817)

Series: Derived Chief Lower central Upper central

C1C22 — C32×C22≀C2
C1C2C22C2×C6C62C2×C62D4×C3×C6 — C32×C22≀C2
C1C22 — C32×C22≀C2
C1C62 — C32×C22≀C2

Generators and relations for C32×C22≀C2
 G = < a,b,c,d,e,f,g | a3=b3=c2=d2=e2=f2=g2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ag=ga, bc=cb, bd=db, be=eb, bf=fb, bg=gb, cd=dc, gcg=ce=ec, cf=fc, de=ed, gdg=df=fd, ef=fe, eg=ge, fg=gf >

Subgroups: 636 in 390 conjugacy classes, 156 normal (10 characteristic)
C1, C2, C2, C3, C4, C22, C22, C22, C6, C6, C2×C4, D4, C23, C23, C23, C32, C12, C2×C6, C2×C6, C22⋊C4, C2×D4, C24, C3×C6, C3×C6, C2×C12, C3×D4, C22×C6, C22×C6, C22≀C2, C3×C12, C62, C62, C62, C3×C22⋊C4, C6×D4, C23×C6, C6×C12, D4×C32, C2×C62, C2×C62, C2×C62, C3×C22≀C2, C32×C22⋊C4, D4×C3×C6, C22×C62, C32×C22≀C2
Quotients: C1, C2, C3, C22, C6, D4, C23, C32, C2×C6, C2×D4, C3×C6, C3×D4, C22×C6, C22≀C2, C62, C6×D4, D4×C32, C2×C62, C3×C22≀C2, D4×C3×C6, C32×C22≀C2

Smallest permutation representation of C32×C22≀C2
On 72 points
Generators in S72
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)(25 26 27)(28 29 30)(31 32 33)(34 35 36)(37 38 39)(40 41 42)(43 44 45)(46 47 48)(49 50 51)(52 53 54)(55 56 57)(58 59 60)(61 62 63)(64 65 66)(67 68 69)(70 71 72)
(1 23 28)(2 24 29)(3 22 30)(4 60 26)(5 58 27)(6 59 25)(7 15 35)(8 13 36)(9 14 34)(10 21 44)(11 19 45)(12 20 43)(16 50 67)(17 51 68)(18 49 69)(31 65 40)(32 66 41)(33 64 42)(37 57 62)(38 55 63)(39 56 61)(46 54 71)(47 52 72)(48 53 70)
(1 15)(2 13)(3 14)(4 21)(5 19)(6 20)(7 28)(8 29)(9 30)(10 26)(11 27)(12 25)(16 32)(17 33)(18 31)(22 34)(23 35)(24 36)(37 70)(38 71)(39 72)(40 69)(41 67)(42 68)(43 59)(44 60)(45 58)(46 55)(47 56)(48 57)(49 65)(50 66)(51 64)(52 61)(53 62)(54 63)
(16 54)(17 52)(18 53)(31 62)(32 63)(33 61)(37 65)(38 66)(39 64)(40 57)(41 55)(42 56)(46 67)(47 68)(48 69)(49 70)(50 71)(51 72)
(1 45)(2 43)(3 44)(4 9)(5 7)(6 8)(10 22)(11 23)(12 24)(13 59)(14 60)(15 58)(16 63)(17 61)(18 62)(19 28)(20 29)(21 30)(25 36)(26 34)(27 35)(31 53)(32 54)(33 52)(37 49)(38 50)(39 51)(40 48)(41 46)(42 47)(55 67)(56 68)(57 69)(64 72)(65 70)(66 71)
(1 15)(2 13)(3 14)(4 21)(5 19)(6 20)(7 28)(8 29)(9 30)(10 26)(11 27)(12 25)(16 54)(17 52)(18 53)(22 34)(23 35)(24 36)(31 62)(32 63)(33 61)(37 65)(38 66)(39 64)(40 57)(41 55)(42 56)(43 59)(44 60)(45 58)(46 67)(47 68)(48 69)(49 70)(50 71)(51 72)
(1 16)(2 17)(3 18)(4 40)(5 41)(6 42)(7 46)(8 47)(9 48)(10 37)(11 38)(12 39)(13 52)(14 53)(15 54)(19 55)(20 56)(21 57)(22 49)(23 50)(24 51)(25 64)(26 65)(27 66)(28 67)(29 68)(30 69)(31 60)(32 58)(33 59)(34 70)(35 71)(36 72)(43 61)(44 62)(45 63)

G:=sub<Sym(72)| (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36)(37,38,39)(40,41,42)(43,44,45)(46,47,48)(49,50,51)(52,53,54)(55,56,57)(58,59,60)(61,62,63)(64,65,66)(67,68,69)(70,71,72), (1,23,28)(2,24,29)(3,22,30)(4,60,26)(5,58,27)(6,59,25)(7,15,35)(8,13,36)(9,14,34)(10,21,44)(11,19,45)(12,20,43)(16,50,67)(17,51,68)(18,49,69)(31,65,40)(32,66,41)(33,64,42)(37,57,62)(38,55,63)(39,56,61)(46,54,71)(47,52,72)(48,53,70), (1,15)(2,13)(3,14)(4,21)(5,19)(6,20)(7,28)(8,29)(9,30)(10,26)(11,27)(12,25)(16,32)(17,33)(18,31)(22,34)(23,35)(24,36)(37,70)(38,71)(39,72)(40,69)(41,67)(42,68)(43,59)(44,60)(45,58)(46,55)(47,56)(48,57)(49,65)(50,66)(51,64)(52,61)(53,62)(54,63), (16,54)(17,52)(18,53)(31,62)(32,63)(33,61)(37,65)(38,66)(39,64)(40,57)(41,55)(42,56)(46,67)(47,68)(48,69)(49,70)(50,71)(51,72), (1,45)(2,43)(3,44)(4,9)(5,7)(6,8)(10,22)(11,23)(12,24)(13,59)(14,60)(15,58)(16,63)(17,61)(18,62)(19,28)(20,29)(21,30)(25,36)(26,34)(27,35)(31,53)(32,54)(33,52)(37,49)(38,50)(39,51)(40,48)(41,46)(42,47)(55,67)(56,68)(57,69)(64,72)(65,70)(66,71), (1,15)(2,13)(3,14)(4,21)(5,19)(6,20)(7,28)(8,29)(9,30)(10,26)(11,27)(12,25)(16,54)(17,52)(18,53)(22,34)(23,35)(24,36)(31,62)(32,63)(33,61)(37,65)(38,66)(39,64)(40,57)(41,55)(42,56)(43,59)(44,60)(45,58)(46,67)(47,68)(48,69)(49,70)(50,71)(51,72), (1,16)(2,17)(3,18)(4,40)(5,41)(6,42)(7,46)(8,47)(9,48)(10,37)(11,38)(12,39)(13,52)(14,53)(15,54)(19,55)(20,56)(21,57)(22,49)(23,50)(24,51)(25,64)(26,65)(27,66)(28,67)(29,68)(30,69)(31,60)(32,58)(33,59)(34,70)(35,71)(36,72)(43,61)(44,62)(45,63)>;

G:=Group( (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36)(37,38,39)(40,41,42)(43,44,45)(46,47,48)(49,50,51)(52,53,54)(55,56,57)(58,59,60)(61,62,63)(64,65,66)(67,68,69)(70,71,72), (1,23,28)(2,24,29)(3,22,30)(4,60,26)(5,58,27)(6,59,25)(7,15,35)(8,13,36)(9,14,34)(10,21,44)(11,19,45)(12,20,43)(16,50,67)(17,51,68)(18,49,69)(31,65,40)(32,66,41)(33,64,42)(37,57,62)(38,55,63)(39,56,61)(46,54,71)(47,52,72)(48,53,70), (1,15)(2,13)(3,14)(4,21)(5,19)(6,20)(7,28)(8,29)(9,30)(10,26)(11,27)(12,25)(16,32)(17,33)(18,31)(22,34)(23,35)(24,36)(37,70)(38,71)(39,72)(40,69)(41,67)(42,68)(43,59)(44,60)(45,58)(46,55)(47,56)(48,57)(49,65)(50,66)(51,64)(52,61)(53,62)(54,63), (16,54)(17,52)(18,53)(31,62)(32,63)(33,61)(37,65)(38,66)(39,64)(40,57)(41,55)(42,56)(46,67)(47,68)(48,69)(49,70)(50,71)(51,72), (1,45)(2,43)(3,44)(4,9)(5,7)(6,8)(10,22)(11,23)(12,24)(13,59)(14,60)(15,58)(16,63)(17,61)(18,62)(19,28)(20,29)(21,30)(25,36)(26,34)(27,35)(31,53)(32,54)(33,52)(37,49)(38,50)(39,51)(40,48)(41,46)(42,47)(55,67)(56,68)(57,69)(64,72)(65,70)(66,71), (1,15)(2,13)(3,14)(4,21)(5,19)(6,20)(7,28)(8,29)(9,30)(10,26)(11,27)(12,25)(16,54)(17,52)(18,53)(22,34)(23,35)(24,36)(31,62)(32,63)(33,61)(37,65)(38,66)(39,64)(40,57)(41,55)(42,56)(43,59)(44,60)(45,58)(46,67)(47,68)(48,69)(49,70)(50,71)(51,72), (1,16)(2,17)(3,18)(4,40)(5,41)(6,42)(7,46)(8,47)(9,48)(10,37)(11,38)(12,39)(13,52)(14,53)(15,54)(19,55)(20,56)(21,57)(22,49)(23,50)(24,51)(25,64)(26,65)(27,66)(28,67)(29,68)(30,69)(31,60)(32,58)(33,59)(34,70)(35,71)(36,72)(43,61)(44,62)(45,63) );

G=PermutationGroup([[(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24),(25,26,27),(28,29,30),(31,32,33),(34,35,36),(37,38,39),(40,41,42),(43,44,45),(46,47,48),(49,50,51),(52,53,54),(55,56,57),(58,59,60),(61,62,63),(64,65,66),(67,68,69),(70,71,72)], [(1,23,28),(2,24,29),(3,22,30),(4,60,26),(5,58,27),(6,59,25),(7,15,35),(8,13,36),(9,14,34),(10,21,44),(11,19,45),(12,20,43),(16,50,67),(17,51,68),(18,49,69),(31,65,40),(32,66,41),(33,64,42),(37,57,62),(38,55,63),(39,56,61),(46,54,71),(47,52,72),(48,53,70)], [(1,15),(2,13),(3,14),(4,21),(5,19),(6,20),(7,28),(8,29),(9,30),(10,26),(11,27),(12,25),(16,32),(17,33),(18,31),(22,34),(23,35),(24,36),(37,70),(38,71),(39,72),(40,69),(41,67),(42,68),(43,59),(44,60),(45,58),(46,55),(47,56),(48,57),(49,65),(50,66),(51,64),(52,61),(53,62),(54,63)], [(16,54),(17,52),(18,53),(31,62),(32,63),(33,61),(37,65),(38,66),(39,64),(40,57),(41,55),(42,56),(46,67),(47,68),(48,69),(49,70),(50,71),(51,72)], [(1,45),(2,43),(3,44),(4,9),(5,7),(6,8),(10,22),(11,23),(12,24),(13,59),(14,60),(15,58),(16,63),(17,61),(18,62),(19,28),(20,29),(21,30),(25,36),(26,34),(27,35),(31,53),(32,54),(33,52),(37,49),(38,50),(39,51),(40,48),(41,46),(42,47),(55,67),(56,68),(57,69),(64,72),(65,70),(66,71)], [(1,15),(2,13),(3,14),(4,21),(5,19),(6,20),(7,28),(8,29),(9,30),(10,26),(11,27),(12,25),(16,54),(17,52),(18,53),(22,34),(23,35),(24,36),(31,62),(32,63),(33,61),(37,65),(38,66),(39,64),(40,57),(41,55),(42,56),(43,59),(44,60),(45,58),(46,67),(47,68),(48,69),(49,70),(50,71),(51,72)], [(1,16),(2,17),(3,18),(4,40),(5,41),(6,42),(7,46),(8,47),(9,48),(10,37),(11,38),(12,39),(13,52),(14,53),(15,54),(19,55),(20,56),(21,57),(22,49),(23,50),(24,51),(25,64),(26,65),(27,66),(28,67),(29,68),(30,69),(31,60),(32,58),(33,59),(34,70),(35,71),(36,72),(43,61),(44,62),(45,63)]])

126 conjugacy classes

class 1 2A2B2C2D···2I2J3A···3H4A4B4C6A···6X6Y···6BT6BU···6CB12A···12X
order12222···223···34446···66···66···612···12
size11112···241···14441···12···24···44···4

126 irreducible representations

dim1111111122
type+++++
imageC1C2C2C2C3C6C6C6D4C3×D4
kernelC32×C22≀C2C32×C22⋊C4D4×C3×C6C22×C62C3×C22≀C2C3×C22⋊C4C6×D4C23×C6C62C2×C6
# reps1331824248648

Matrix representation of C32×C22≀C2 in GL4(𝔽13) generated by

9000
0900
0010
0001
,
9000
0900
0030
0003
,
12000
01200
0010
00212
,
1000
01200
0010
0001
,
1000
0100
00120
00012
,
12000
01200
0010
0001
,
0100
1000
00112
00012
G:=sub<GL(4,GF(13))| [9,0,0,0,0,9,0,0,0,0,1,0,0,0,0,1],[9,0,0,0,0,9,0,0,0,0,3,0,0,0,0,3],[12,0,0,0,0,12,0,0,0,0,1,2,0,0,0,12],[1,0,0,0,0,12,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,12,0,0,0,0,12],[12,0,0,0,0,12,0,0,0,0,1,0,0,0,0,1],[0,1,0,0,1,0,0,0,0,0,1,0,0,0,12,12] >;

C32×C22≀C2 in GAP, Magma, Sage, TeX

C_3^2\times C_2^2\wr C_2
% in TeX

G:=Group("C3^2xC2^2wrC2");
// GroupNames label

G:=SmallGroup(288,817);
// by ID

G=gap.SmallGroup(288,817);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-3,-2,-2,1037,3110]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^3=b^3=c^2=d^2=e^2=f^2=g^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,g*c*g=c*e=e*c,c*f=f*c,d*e=e*d,g*d*g=d*f=f*d,e*f=f*e,e*g=g*e,f*g=g*f>;
// generators/relations

׿
×
𝔽